Part Number Hot Search : 
NTE222 TSC3928 SRF735 LF347DT 02007 130FO301 TMEGA32 TSH74
Product Description
Full Text Search
 

To Download V23990-K229-A40-P3-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-k229-a40-pm preliminary datasheet miniskiip? 2 pim 1200v / 25a solderless interconnection trench fieldstop igbt4 technology industrial motor drives v23990-k229-a40-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 37 tc=80c 40 t h =80c 43 tc=80c 65 maximum junction temperature t j max 150 c inverter transistor t h =80c 26 tc=80c 30 t h =80c 61 tc=80c 92 t sc t j 150c 10 s v cc v ge =15v 800 v 360 t j =150c t j =t j max t p =10ms t j =t j max t j =t j max t p limited by t j max 20 175 a a 75 1200 collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c features miniskiip? 2 housing target applications schematic 270 input rectifier diode p tot a w dc forward current surge forward current power dissipation per diode a types i 2 t-value maximum ratings i fav a 2 s i fsm condition t j =t j max v c v w gate-emitter peak voltage maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings i 2 t copyright vincotech 1 revision: 3
v23990-k229-a40-pm preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 19 tc=80c 25 t h =80c 43 tc=80c 65 brake transistor t h =80c 26 tc=80c 30 t h =80c 59 tc=80c 90 t sc t j 150c 10 s v cc v ge =15v 800 v brake diode t h =80c 20 tc=80c 27 t h =80c 46 tc=80c 70 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm 160 1200 75 20 1200 175 t j max t p limited by t j max maximum junction temperature short circuit ratings gate-emitter peak voltage c w a 175 dc collector current power dissipation per igbt collector-emitter break down voltage repetitive peak collector current v a i cpuls v maximum junction temperature c p tot i frm t j max 1200 v w v ge t j =t j max w a v a power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p =10ms half sine v rrm p tot v ce i c t j =t j max peak repetitive reverse voltage dc forward current a t j =t j max t p =10ms half sine a 160 t j =t j max repetitive peak forward current power dissipation per diode i f v rrm peak repetitive reverse voltage c maximum junction temperature t j max 175 -40+(tjmax - 25) c storage temperature t stg -40+125 c clearance insulation voltage creepage distance t op operation temperature under switching condition copyright vincotech 2 revision: 3
v23990-k229-a40-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,08 1,35 tj=125c 1,03 tj=25c 0,9 tj=125c 0,78 tj=25c 18 tj=125c 21 tj=25c 0,01 tj=125c 1,1 thermal resistance chip to heatsink per chip r thjh 1,63 thermal resistance chip to case per chip r thjc 1 tj=25c 5 5,8 6,5 tj=150c tj=25c 1,35 1,88 2,15 tj=150c 2,2 tj=25c 0,05 tj=150c tj=25c 300 tj=150c tj=25c 112 tj=150c 113 tj=25c 29,3 tj=150c 34,7 tj=25c 231 tj=150c 303 tj=25c 91 tj=150c 137 tj=25c 1,87 tj=150c 2,77 tj=25c 1,49 tj=150c 2,43 thermal resistance chip to heatsink per chip r thjh 1,57 thermal resistance chip to case per chip r thjc n/a tj=25c 1,5 2,47 2,75 tj=150c 2,49 tj=25c 13,5 tj=150c 18,3 tj=25c 319 tj=150c 544 tj=25c 1,48 tj=150c 3,69 di(rec)max tj=25c 174 /dt tj=150c 64 tj=25c 0,52 tj=150c 1,44 thermal resistance chip to heatsink per chip r thjh 2,22 thermal resistance chip to case per chip r thjc n/a thermal grease thickness 50 m =1w/mk k /w thermal grease thickness 50 m =1w/mk k /w a 15 v 25 - v v nc v ce =v ge f=1mhz rgoff=32 ? 15 0 0 15 vcc=960v t r t d(off) q gate c ies q rr t rr v f peak reverse recovery current reverse transfer capacitance i ges v ge(th) v ce(sat) i ces erec c oss r gint t f e on e off i rrm t d(on) c rss input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage turn-on energy loss per pulse collector-emitter cut-off current incl. diode value c onditions characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 25 k /w v v m ? ma r everse current i r 85 c mws a/s rgon=32 ? 20 1 5 25 25 600 diode forward voltage gate charge reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge inverter diode fall time t urn-off delay time turn-on delay time rise time gate-emitter leakage current integrated gate resistor inverter transistor gate emitter threshold voltage 2 5 0,00085 40 600 25 0 1200 1500 thermal grease thickness 50 m =1w/mk r gon=32 ? tj=25c t j=25c ns ma ns na 1430 115 120 ? pf m ws copyright vincotech 3 revision: 3
v23990-k229-a40-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c onditions characteristic values tj=25c 5 5,8 6,5 tj=150c tj=25c 1,35 1,88 2,15 tj=150c 2,2 tj=25c 0,05 tj=150c tj=25c 300 tj=150c - tj=25c 112 tj=150c 114 tj=25c 34 tj=150c 40 tj=25c 217 tj=150c 289 tj=25c 91 tj=150c 143 tj=25c 1,97 tj=150c 2,88 tj=25c 1,46 tj=150c 2,36 thermal resistance chip to heatsink per chip r thjh 1,6 thermal resistance chip to case per chip r thjc n/a tj=25c 1,5 2,46 2,75 tj=150c 2,49 tj=25c 60 tj=150c tj=25c 11,3 tj=150c 15,6 tj=25c 327 tj=150c 562 tj=25c 1,42 tj=150c 3,41 di(rec)max tj=25c 111 /dt tj=150c 42 tj=25c 0,51 tj=150c 1,32 thermal resistance chip to heatsink per chip r thjh 2,06 thermal resistance chip to case per chip r thjc n/a e vincotech ntc reference 1,731*10-5 1/k2 7,635*10-3 1/k b-value b(25/100) tol. % t=25c t=25c a-value b(25/50) tol. % v ns mws c a/s k/w a n s a ? 1000 % - 3 25 1670,313 3 85 tj=25c tj=25c 120 turn-off energy loss per pulse q gate gate-emitter leakage current i ces v ge(th) collector-emitter cut-off incl. diode gate charge input capacitance reverse transfer capacitance c rss c ies brake transistor turn-on delay time t d(on) r gint gate emitter threshold voltage v ce(sat) collector-emitter saturation voltage peak rate of fall of recovery current peak reverse recovery current reverse recovered charge rise time turn-off delay time t d(off) e off turn-on energy loss per pulse t f fall time t r output capacitance integrated gate resistor brake diode nc k /w mw/k t=25c t=100c t=25c thermal grease thickness 50 m =1w/mk 1 5 thermal grease thickness 50 m =1w/mk r 100 p ? t=100c r ated resistance r power dissipation constant deviation of r100 ? r/r r100=1670 ? e rec reverse recovery time i rrm diode forward voltage reverse leakage current v f i r t rr q rr rgon=32 ? rgoff=32 ? v ce =v ge vcc=960v c oss e on i ges 15 mws 115 1430 pf ma na v v ? 25 0 ,00085 25 0 f=1mhz 15 thermistor rgon=32 ? reverse recovery energy 15 15 0 20 600 25 25 1200 0 40 600 600 25 copyright vincotech 4 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fred typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a r goff = 32 ? figure 7 o utput inverter igbt figure 8 output inverter igbt typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a output inverter e on high t e off high t e on low t e off low t 0 2 4 6 8 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 0 30 60 90 120 150 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,4 0,8 1,2 1,6 2 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,4 0,8 1,2 1,6 2 0 30 60 90 120 150 r g ( w ) e (mws) copyright vincotech 6 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a r goff = 32 ? figure 11 o utput inverter fred figure 12 output inverter fred typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 ? v ge = 15 v output inverter t doff t f t don t r 0,001 0,01 0,1 1 0 5 10 15 20 25 30 35 40 45 50 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0,2 0,4 0,6 0,8 1 0 30 60 90 120 150 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0 0,2 0,4 0,6 0,8 1 0 5 10 15 20 25 30 35 40 45 50 i c (a) t rr ( m s) copyright vincotech 7 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 13 output inverter fred figure 14 output inverter fred typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 ? v ge = 15 v figure 15 o utput inverter fred figure 16 output inverter fred typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 ? v ge = 15 v output inverter t j = t jmax - 25c t j = 25c i rrm 0 10 20 30 40 50 0 30 60 90 120 150 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 0 30 60 90 120 150 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 45 50 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 0 5 10 15 20 25 30 35 40 45 50 i c (a) q rr ( m c) copyright vincotech 8 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 17 output inverter fred figure 18 output inverter fred typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 ? v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,57 k/w r thjh = 2,22 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,07 3,7e+00 0,04 9,3e+00 0,34 6,1e-01 0,33 7,6e-01 0,73 1,5e-01 0,92 1,5e-01 0,28 2,9e-02 0,53 3,0e-02 0,09 4,4e-03 0,25 4,4e-03 0,06 4,1e-04 0,14 6,5e-04 output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax - 25c di 0 /dt di rec /dt high t di rec /dt t j = 25c 0 700 1400 2100 2800 3500 0 30 60 90 120 150 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 200 400 600 800 1000 0 5 10 15 20 25 30 35 40 45 50 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt copyright vincotech 9 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fred figure 24 output inverter fred power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 25 a t h = 80 oc v ge = 15 v t j = t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 10u 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 q g (nc) v ge (v) 240v 960v copyright vincotech 11 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fred typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 12 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a r goff = 32 ? figure 7 b rake igbt figure 8 brake igbt typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0,4 0,8 1,2 1,6 2 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,4 0,8 1,2 1,6 2 0 30 60 90 120 150 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0 2 4 6 8 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 2 4 6 8 0 30 60 90 120 150 r g ( w ww w ) e (mws) copyright vincotech 13 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a r goff = 32 ? figure 11 b rake igbt figure 12 brake fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 1,60 k/w r thjh = 2,06 k/w brake t doff t f t don t r 0,001 0,01 0,1 1 0 5 10 15 20 25 30 35 40 45 50 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 14 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fred figure 16 brake fred power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 15 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = t p / t r thjh = 1,632 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 15 30 45 60 75 0 0,5 1 1,5 2 2,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 16 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 1 thermistor typical ptc characteristic a s a function of temperature r t = f(t) thermistor ptc-typical temperature characteristic 1000 1200 1400 1600 1800 2000 25 50 75 100 125 t (c) r/ ? copyright vincotech 17 revision: 3
v23990-k229-a40-pm preliminary datasheet t j 150 c r gon 32 ? r goff 32 ? figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 25 a i c (100%) = 25 a t doff = 0,30  s t don = 0,11  s t eoff = 0,68  s t eon = 0,42  s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 25 a i c (100%) = 25 a t f = 0,14  s t r = 0,03  s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -30 -10 10 30 50 70 90 110 130 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -30 0 30 60 90 120 150 180 210 5,9 6 6,1 6,2 6,3 6,4 6,5 6,6 6,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 time (us) % v ce i c t f i c10% i c 90% -30 0 30 60 90 120 150 180 210 5,9 6 6,1 6,2 6,3 6,4 6,5 6,6 6,7 time(us) % tr v ce ic copyright vincotech 18 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 14,95 kw p on (100%) = 14,95 kw e off (100%) = 2,43 mj e on (100%) = 2,77 mj t eoff = 0,68 s t eon = 0,42 s figure 7 o utput inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) t urn-off switching waveforms & definition of t rr v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 25 a v c (100%) = 600 v i rrm (100%) = 18 a i c (100%) = 25 a t rr = 0,54 s q g = 186,82 nc switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 1 time (us) % p off e off t eoff v ce 3% v ge 10% -20 20 60 100 140 180 5,85 6 6,15 6,3 6,45 6,6 6,75 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 250 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% trr -120 -80 -40 0 40 80 120 6 6,2 6,4 6,6 6,8 7 time(us) % i d v d fitted copyright vincotech 19 revision: 3
v23990-k229-a40-pm preliminary datasheet figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 25 a p rec (100%) = 14,95 kw q rr (100%) = 3,69 c e rec (100%) = 1,44 mj t qrr = 0,90 s t erec = 0,90 s switching definitions output inverter t qrr -100 -50 0 50 100 150 6 6,2 6,4 6,6 6,8 7 7,2 % i d q rr time(us) -20 0 20 40 60 80 100 120 6 6,2 6,4 6,6 6,8 7 7,2 time(us) % p rec e rec te rec copyright vincotech 20 revision: 3
v23990-k229-a40-pm preliminary datasheet version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k12-t-pm) v23990-k229-a40-/0a/-pm k229a40 k229a40-/0a/ with std lid (black v23990-k12-t-pm) and p12 v23990-k229-a40-/1a/-pm k229a40 k229a40-/1a/ with thin lid (white v23990-k13-t-pm) v23990-k229-a40-/0b/-pm k229a40 k229a40-/0b/ with thin lid (white v23990-k13-t-pm) and p12 v23990-k229-a40-/1b/-pm k229a40 k229a40-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 21 revision: 3
v23990-k229-a40-pm preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target product status datasheet status definition this datasheet contains the design specifications for product development. specifications may change in any manner without notice. the data contained is exclusively intended for technically trained staff. preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. copyright vincotech 22 revision: 3


▲Up To Search▲   

 
Price & Availability of V23990-K229-A40-P3-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X